
Laplacian-Based Consensus on Spatial Computers

Nelson Elhage
MIT CSAIL

77 Massachusetts Ave
Cambridge, MA USA
nelhage@mit.edu

Jacob Beal
BBN Technologies
10 Moulton Street

Cambridge, MA USA
jakebeal@bbn.com

ABSTRACT
Robotic swarms, like all spatial computers, are a challenging
environment for the execution of distributed consensus al-
gorithms due to their scale, diameter, and frequent failures.
Exact consensus is generally impractical on spatial comput-
ers, so we consider approximate consensus algorithms. In
this paper, we show that the family of self-organizing proto-
cols based on the graph Laplacian of a network[19] are im-
practical as well. With respect to the structure of a finite-
neighborhood spatial computer, we find that these proto-
cols have an expected convergence time of O(diameter2)
when the inputs are strongly correlated with location. Ver-
ifying this result in simulation, we further determine that
the constant factor on the convergence time is high, render-
ing Laplacian-based approximate consensus unsuitable for
general use on spatial computers.

Categories and Subject Descriptors
I.2.11. [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms

Keywords
Spatial computing, Proto, Amorphous computing

1. INTRODUCTION
Multi-robot systems are intimately tied to the problem of

consensus. Many of the basic activities of groups of robots,
such as moving together in a coherent group, choosing be-
tween possible tasks, and electing leaders, can be viewed
as distributed consensus problems, in which a collection of
networked devices agree on a single representative value de-
rived from the initial inputs of all the participating devices.
Large swarms of robots, however, are a challenging environ-
ment for the execution of distributed consensus algorithms
due to their scale, diameter, and frequent failures.

A key part of the challenge comes from the spatially-
correlated network structure typical of robotic swarms with

Cite as: Laplacian-Based Consensus on Spatial Computers, Nelson
Elhage, Jacob Beal, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

short-range communication. Although distributed consen-
sus is a generally well-studied topic in computer science,
there has been little exploration of the practicalities of dis-
tributed consensus on these sorts of spatial computers—potentially
large collections of devices distributed to fill a space, where
communication between devices is highly localized. A robotic
swarm is one example of a spatial computer; others include
sensor networks, peer-to-peer wireless, pervasive computing,
and engineered bacterial colonies. Distributed consensus
tends to arise as a problem on other spatial computers as
well, and viewing the problem through this common frame-
work will allow results in the area of robotic swarms to apply
across all these domains as well.

Exact consensus is generally impractical on spatial com-
puters, so we consider approximate consensus algorithms.
One attractive possible approach to approximate consensus
is the family of self-organizing protocols based on the graph
Laplacian of a network[19], which compute an averaging-
based consensus. In recent years, theoretical study using
the tools of algebraic graph theory and control theory have
showed these protocols to be robust and exponentially con-
vergent (Olfati-Saber et al. summarize a number of key
mathematical results in their survey of the field [18]). More-
over, these Laplacian-based consensus algorithms have been
successfully applied to many networked systems, including
robotic tasks such as flocking and swarming (e.g. [17]), for-
mation control (e.g. [7]), and shape-formation in a modular
robot (e.g. [22]).

Despite their theoretical elegance and promising applica-
tions, however, we find that these algorithms scale poorly on
finite-neighborhood spatial computers. Analysis shows that
when inputs are strongly correlated with location (which
is the typical case on spatial computers), they have an ex-
pected convergence time of O(diameter2) with respect to
the structure of the spatial computer—far from the desired
lower bound of O(diameter). Verifying this result in sim-
ulation, we further determine that the constant factor on
the convergence time is high, rendering Laplacian-based ap-
proximate consensus unsuitable for general use on spatial
computers.

2. SPATIAL COMPUTING
Spatial computing is the study of collections of local com-

putational devices distributed through a physical space, in
which:

• the difficulty of moving information between any two
devices is strongly dependent on the distance between
them, and

907

907-914

• the “functional goals” of the system are generally de-
fined in terms of the system’s spatial structure.

Systems that can be viewed as spatial computers are abun-
dant, both natural and man-made—examples include wire-
less sensor networks, animal and robot swarms, reconfig-
urable hardware like FPGAs, biological embryos, peer-to-
peer wireless, pervasive computing, and engineered bacterial
colonies.

The roots of spatial computing as a unified field lie in
amorphous computing, biological modelling, pervasive com-
puting, and reconfigurable computing. Amorphous com-
puting[1] considers the programming of myriad simple and
error-prone devices arranged in an irregular locally-connected
network. Amorphous computing approaches are often bio-
logically inspired, as in the pattern-formation work of Coore[5]
and Nagpal[14]. This is also the source of the continu-
ous space abstraction[3] and Proto programming language[4]
that we use for simulations in this paper. At the same time,
the challenge of modelling developing biological systems led
to the development of the MGS topological language[8], and
a general inquiry into the relationship between space and
computation[9], while consideration of scaling in reconfig-
urable computing (e.g. [6]) and the long-term implications
of pervasive computing (e.g. [23]) also converge on the same
spatial problems for study.

2.1 Formal Definition of a Spatial Computer
In this work, we consider the consensus problem in the

context of finite-neighborhood spatial computers that com-
municate via short-range broadcast.

Formally, let us take the definition of a spatial computer
to be the combination of:

• A set of n devices in a weighted graph G = {V, E},
with a weighting function w that maps each edge ei,j ∈
E to a non-negative real number.

• A Riemannian manifold M with distance function d
(a manifold is a space that is locally Euclidean; a Rie-
mannian manifold also provides geometric properties
like angles and surface integrals)

• A mapping p : V → M of each device to a unique
position in the manifold

with the additional constraint that the weight w(ei,j) =
O(1/d(p(i), p(j))). In other words, the weight of edges de-
creases at least linearly with distance (except for a possible
initial transient).

A finite-neighborhood spatial computer is one in which
there is a fixed range r such that d(p(i), p(j)) > r implies
that w(ei,j) = 0. In other words, there are no direct connec-
tions between devices farther than some fixed range away
from one another.

A short-range radio broadcast network, as is commonly
used in sensor robotic swarms, is an example of a finite-
neighborhood spatial computer: even though radio waves
propagate without limit, beyond some fixed range there is
effectively zero communication. If modelled as a unit disc
network (a severe simplification), the weight function is

w(ei,j) =

j
1 if d(p(i), p(j)) ≤ r
0 if d(p(i), p(j)) > r

Although it is not formally included in the definition, the
case in which spatial computers are most interesting is gen-
erally when both n and distances between most devices may
be large. For example, a large robotic swarm performing
search and rescue, might include thousands of devices and
an extended “pseudopod” of the swarm might be hundreds
of hops long.

As is the case in amorphous computing[1], we commonly
assume that the large scale of a spatial computing system
means that at any given instant there is a high likelihood
that an error is occurring somewhere within the system—
devices are crashing or misbehaving, messages are being
dropped, new devices are being added. The specifics of the
error model vary from system to system, but in all of them
the robustness of the system is assumed to be constantly
challenged.

3. DISTRIBUTED CONSENSUS
In distributed consensus, every device i begins with its

own initial value xi(0) and within finite time comes to agree
on the same value that every other device agrees on, where
that value depends in some way on the set of initial values.

In an exact consensus algorithm, the values may be dis-
crete and there is some time t following which every node has
decided on precisely the same value. Unfortunately, even
though recent developments such as quorum consensus[2]
have greatly reduced the cost and fragility of available al-
gorithms, there are a plethora of lower bounds and impos-
sibility results (see [12] for some key examples) that render
exact consensus generally impractical given the large scale,
diameter, and frequent errors typical of spatial computers.
For example, maintaining a quorum consensus algorithm on
a changing collection of devices requires frequent updates of
the quorums, and if any update fails the algorithm is irre-
vocably stalled.

We thus turn instead to approximate consensus algorithms,
which evade these difficulties by weakening the agreement
conditions. One particularly successful family of approxi-
mate consensus algorithms are Laplacian-based average-consensus
algorithms[19, 18]. These solve a specific variety of dis-
tributed consensus problems: given real-number initial val-
ues, the values held by every device converge asymptotically
toward the mean of the initial values—making it possible to
establish that there is some time t after which the difference
in values is always less than a desired error e. In recent
years, these have been successfully applied to a number of
spatial computing problems at relatively small scale, such
as flocking and swarming (e.g. [17]), sensor fusion (e.g. [21,
20]), shape-formation in modular robotics (e.g. [22]), and
formation control for multi-robot systems (e.g. [7])

Let us briefly summarize the general algorithm and rele-
vant convergence results, as presented in [18], which reviews
many variants of the algorithm and a number of key mathe-
matical results. For the spatial computer model under con-
sideration, the applicable variant is the following discrete-
time consensus algorithm:

xi(k + 1) = xi(k) + ε
X

j∈Ni

w(ei,j) · (xj(k) − xi(k)) (1)

where xi(t) is the value at device i at time t, Ni is the
set of device i’s neighbors, and w(ei,j) is the weight of the
edge from i to j. The constant ε > 0 is the step size of the
algorithm. The analysis of Olfati-Saber and others indicates

908

w

r

N

n

h

Figure 1: A spatial computer with unit disc commu-
nication and uniform random distribution of devices
through a rectangular area can be described with
five parameters: width w and height h, number of
devices n, radius of communication r, and expected
number of neighbors N̄ .

that in order for the algorithm to converge, we require ε <
1
Δ

, where Δ is the maximum degree of the network. If this
condition is satisfied, for an undirected graph, Algorithm
(1) asymptotically converges for all initial conditions to an
average-consensus of xi(∞) = 1

n

P
i xi(0).

The convergence speed of Algorithm (1) is governed by
the eigenvalues of the graph Laplacian matrix for the con-
nectivity graph of a given network. Let A = [w(ei,j)] be
the adjacency matrix for the connectivity graph, and let
D = diag(d1, . . . , dn) be the degree matrix, with diagonal
elements di =

P
j �=i w(ei,j). The matrix L = D − A is

known as the graph Laplacian of the graph, and governs the
dynamics of the consensus algorithm.

In particular, the values converge exponentially from their
initial values toward the average with a rate constant of
μ2 = 1 − ελ2, where the size of the disagreement δ(k) at
time k is bounded above by μk

2 ||δ(0)|| and λ2 is the second
eigenvalue of the graph Laplacian.

This convergence rate is not as good as it may first appear.
Although it converges exponentially with respect to the ini-
tial disagreement, the critical λ2 that regulates the speed of
the convergence is dependent on the structure of the graph,
and may vary greatly. The available bounds on the eigenval-
ues of the graph Laplacian are not very tight when applied to
spatial computers. Letting Δ denote the maximum degree
of a graph, [15] gives wide bounds in terms of the graph’s
diameter:

4

n · diameter
≤ λ2 ≤ Δ − 2

√
Δ − 1 +

2
√

Δ − 1 − 1

�diameter/2	
The author notes that, for fixed n, large diameter corre-

sponds to small λ2, but does not attempt to precisely char-
acterize the relationship. [13] and [11] demonstrate some
additional bounds, but they are also insufficiently tight to
accurately estimate the order of the convergence time for
large spatial computers. The existing theoretical results on
convergence rate of Laplacian-based approximate consensus
are thus insufficient on their own to determine whether this
algorithm is practical for spatial computers.

4. ANALYSIS
Lacking sufficiently tight theoretical bounds on λ2, we in-

stead begin our analysis from the perspective of the spatial
computer.

Assuming unit disc communication and a uniform ran-
dom distribution through a rectangular area, our spatial
computer has five parameters—number of devices n, ex-
pected number of neighbors N̄ , radius of communication
r, the width w and height h of the the distribution area
(Figure 1). There are only four degrees of freedom, though,
since expected number of neighbors can be derived from n,
r, and the area. The expected diameter of the network can
also be derived from these parameters (using the relations
derived in [10]).

The Laplacian-based consensus algorithm adjusts the lo-
cal function value by a small fraction of the difference be-
tween it and its neighbors. When the algorithm runs on a
spatial computer that approximates space well (N̄ ≥ 6, per
[10]) with a small ε, we may thus expect it to behave like dif-
fusion. We now consider the time that the algorithm takes
to converge such that every device is expected to be within
some fixed error e of the true average.

Diffusive phenomena scale time-wise with the square of
distance—as is to be expected given the relationship of molec-
ular diffusion and random walks. Thus, if the initial distri-
bution of xi(0) values is spatially correlated across a distance
c, it should require time proportional to c2 for all values in
the system to converge to within e of the average. In the gen-
eral case of spatial correlation, then, the convergence time
is proportional to diameter2.

Since the algorithm’s update rule is not normalized with
respect to the number of neighbors, that will also have an
effect on the convergence time. Double the neighbors means
double the amount of change for a fixed ε, so we may expect
an inversely proportional relationship between N̄ and the
time to converge to within e of the average. As N̄ increases,
the diameter may be expected to shrink slightly as well (per
[10]).

The effect from the initial difference δ(0) and the update
constant ε are, of course, just as before. Putting all of these
terms together, we find that to a first order of approximation
the expected time for the values of a spatial computer to
converge to within e of the true average is:

O(
diameter2 · ln(δ(0))

N̄ · ε)

The value of ε, however, is related to the number of neigh-
bors. If Δ is the highest degree of any device in the network,
then the algorithm is only guaranteed to converge if ε is less
than 1/Δ [18]. Thus we have

ε < 1/Δ ≤ 1/N̄

N̄ · ε < 1

Assuming that a larger ε (and thus a faster convergence
time) is always preferred, we may assume that N̄ ·ε is bounded
below by some constant as well, and therefore our final
bound on expected convergence time is:

O(diameter2 · ln(δ(0)))

where diameter is the only variable relating to the structure
of the spatial computer.

909

5. EXPERIMENTAL VERIFICATION
In order to verify our analysis, and to establish the range

of constant factors for finite-neighborhood spatial comput-
ers, we turn to experiments in simulation. We performed
a series of experiments to verify the predictions of the pre-
vious section with respect to the asymptotic scaling of the
convergence time.

We begin with an experiment to confirm the effect of cor-
relating the initial conditions with spatial position. Having
verified that convergence times scale badly for networks with
spatially correlated initial conditions, we carried out exper-
iments for each relevant variable in the analysis above to
confirm its effect.

We confirmed the quadratic effect of diameter in two sep-
arate experiments. We first varied n and w while fixing N̄ ,
thus varying the diameter with n. In the second experiment,
we fixed N̄ and n, but changed the shape of the space by
varying l and w, to confirm that aspect ratio has no signif-
icant effect on the scaling from spatial correlation. In both
cases we observed the expected quadratic dependence.

We also ran experiments varying N̄ , and confirmed both
the expected direct linear effect, as well as the smaller effect
from the changing network diameter. Finally, we ran exper-
iments varying ε and δ(0) and observed the expected effects
on the convergence time.

5.1 Experimental Setup
We implemented the approximate consensus algorithm in

Proto[4], a language for programming aggregate behavior
on spatial computers. In Proto, computation is specified
as operations on fields, where a field is a function mapping
each point in space to a value. The implementation of the
algorithm in Proto is:

(def consensus (epsilon init)
(rep val init

(+ val
(* epsilon

(sum-hood (- (nbr val) val))))))

This consensus function takes two arguments, the consen-
sus parameter ε and the field assigning initial values to each
device. The rep construct creates a variable val, which will
hold the current approximate consensus value at each de-
vice. This starts at the initial value init for each device,
then evolves according to the consensus law.

Simulations were then performed in the MIT Proto net-
work simulator using a unit disc model of communication, in
which each device communicates with all neighbors within
r meters.

Except when noted otherwise, experiments were performed
with n = 2000 devices uniformly randomly distributed on a
rectangular h = 100 meter by w = 250 meter space, with the
radio range r set to give an expected N̄ = 10 neighbors per
device (approximately 6.3 meters). Devices executed asyn-
chronously, transmitting once per second. We used a con-
servative step size of ε = 0.02, which is expected to be well
within the convergent region for the algorithm (although in
occasional high N̄ cases the random distribution may cause
violation of the 1/Δ convergence constraint). Initial con-
ditions are set with xi(0) = 0 in the left half of the space
and xi(0) = 50 in the right half of the space—a worst-case
spatial arrangement for diffusion. Note that this means the
convergence time is expected to be regulated by width rather
than the full diameter (along the diagonal), since the initial
conditions are vertically homogeneous.

● ● ● ● ● ● ● ● ● ● ●

1000 1500 2000 2500 3000 3500 4000

0
50

00
0

10
00

00
15

00
00

Number of Nodes

C
on

ve
rg

en
ce

 ti
m

e
(s

)

●

Interval, independent
Two−value, independent
Linear, spatial
Two−value, spatial

Figure 2: When initial values of devices are strongly
correlated with a device’s location in a spatial com-
puter, convergence time scales much worse than
when they are independent of position.

In every case, we measure end-to-end convergence time of
the algorithm, recording how many simulated seconds t it
takes for 95% of all nodes in the network to reach a value
within e = 2 units of the actual mean value based on the
known initial conditions. Since each simulated node updates
once per simulated second, these convergence times in sec-
onds are thus equal to the number of update cycles of the
algorithm.

For all plots, the data points shown are the average of
the convergence time for 50 runs with the same parameters.
Error bars are drawn at ± two standard deviations of the
distribution for the same 50 experiments.

5.2 Initial
We performed an initial empirical exploration to confirm

the importance of correlating the initial condition of a node
with its spatial position. We varied n from 800 to 4000
nodes, scaling w linearly with n from 100 up to 500, and
thus varying the width while maintaining N̄ = 10 expected
neighbors. At each point, we ran simulations under 4 differ-
ent sets of initial conditions:

1. xi(0) chosen uniformly randomly from the interval [0, 50].

2. xi(0) set to 0 or 50 with 50% probability.

3. xi(0) varying linearly from 0 to 50 with the horizontal
position of the node.

4. xi(0) set to 0 in the left half of the space and 50 in the
right half.

For networks with randomized initial conditions, uncor-
related with position we find consistently fast convergence

910

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

1000 2000 3000 4000 5000

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00

Number of Nodes

C
on

ve
rg

en
ce

 ti
m

e(
s)

Figure 3: Convergence time scales quadratically as
a function of network width. This plot shows a
quadratic fit for number of nodes where width scales
with number of nodes, holding expected number of
neighbors fixed.

times, independent of network size (Figure 2). When ini-
tial conditions are correlated with the position of the node,
however, we see the predicted quadratic scaling.

In both cases, changing the initial conditions between ones
that only have xi(0) at either 0 or 50 and ones that are
smoothly distributed across the range has only a small effect
on the convergence time, as the diffusive process eliminates
drastic local differences quickly, but then takes a long time
to smooth out smaller disagreements across space.

5.3 Scaling with Network Diameter
We next performed a series of experiments to verify the

consensus algorithm’s scaling characteristics with network
diameter. We varied n and the width of the space together,
fixing N̄ = 10 expected neighbors while varying the di-
ameter. We varied n between 800 and 6000 nodes, dis-
tributed randomly over a space varying from 100m × 100m
to 750m × 100m. Given N̄ = 10, by the results of Klein-
rock and Silvester [10], we can estimate the effective width
as varying from about 20 hops to around 170 hops.

As predicted, convergence time scales quadratically with
width. Figure 3 shows the results along with a best-fit
quadratic regression. Note, however, that even for mod-
est numbers of hops the number of rounds to converge is in
the thousands. The quadratic term of the fit shown in Fig-
ure 3 is 11.3w2, measuring w in expected hops. Although
this is not a massive constant, it does mean that that im-
pact of the quadratic scaling is increased by another order
of magnitude—and cannot be significantly improved upon
due to the ε < 1/Δ convergence constraint.

●

●

●

●

●

●

●

●

●

150 200 250 300 350 400 450

0
50

00
0

10
00

00
15

00
00

20
00

00

Width of space

C
on

ve
rg

en
ce

 ti
m

e
(s

)
Figure 4: Convergence time depends on width, not
number of devices. This plot shows a quadratic fit
for width on simulations of n = 2000 devices in a
fixed area with varying aspect ratio.

5.4 Effect of Aspect Ratio
In order to verify that the quadratic scaling is an effect

of the network width, rather than n, we performed another
series of experiments. In these, we fixed the number of nodes
at n = 2000, and varied the shape of the space on which
they were distributed, between a 158m × 158m square to a
1 : 10 rectangle 500m × 50m. By our analysis, we expect
convergence time to be a function of the width of the space
– since the process is symmetrically distributed across the
height, only the horizontal distance is relevant.

We once again observe a quadratic dependency on the
width of the network, even though all experiments have the
same number of devices (Figure 4). Note that the although
the mean is regulated by width, the variance increases as the
height becomes smaller. This is to be expected given that
smaller height means less randomly distributed nodes in the
cross-section of the spatial computer.

5.5 Effect of Degree
As further verification of the effect of diameter, we per-

formed a third series of simulations, in which we fixed the
space on which nodes were distributed, but varied the num-
ber of nodes, in order to vary N̄ between 10 and 25.

We expect to observe two effects by changing the number
of neighbors. First, as noted in Section 4, there should be an
inverse linear effect from number of neighbors. Second, there
should be a smaller effect due to the decreasing of the diam-
eter of the network. As the number of neighbors increases,
the expected progress towards any destination gained by a
single radio hop also increases gradually [10], decreasing the
hop distance between the edges of the space.

We confirmed both effects in our simulations. Figure 5(a)

911

●

●

●

●

10 15 20 25

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Expected number of neighbors (N)

C
on

ve
rg

en
ce

 ti
m

e
(s

)

(a)

●

●

●
●

10 15 20 25

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5
5e

+0
5

Expected number of neighbors (N)

C
on

ve
rg

en
ce

 ti
m

e
(s

) *
 N

(b)

Figure 5: End-to-end convergence time (a) scales primarily with the inverse number of neighbors (inverse fit
shown by line), plus a smaller factor from higher N̄ increasing the expected progress per hop and therefore
decreasing diameter slightly. In (b) we plot N̄ against t · N̄ to highlight the secondary effect from higher N̄ .

plots N̄ against t, showing the inverse linear relationship
between number of neighbors and convergence time. In Fig-
ure 5(b), we plot N̄ against t · N̄ , removing the expected
inverse linear effect of N̄ and highlighting another smaller
effect from decreasing the diameter of the network, with di-
minishing gains as the progress factor approaches 1.

5.6 Effects of Step Size and Initial Disagree-
ment

We performed an additional pair of experiments to con-
firm that well-understood aspects of the approximate con-
sensus algorithm worked as believed in our simulations. In
the first experiment, we examined the effect of the step size
ε. With all other parameters fixed, we recorded convergence
time for values of ε ranging between 0.01 and 0.1.

As analyzed in Section 4, we expect an inverse linear im-
pact from the step size in the convergence process, so long
as the system converges. By the results of Olfati-Saber and
others, we also know that the system is guaranteed to con-
verge only for ε < 1/Δ. With an expected average degree of
10, some nodes will have degrees potentially much greater,
and so we should expect instability some time before ε = 0.1.

The results of the experiments with ε appear in Figure
6. For values of ε > 0.08, more than half the experiments
diverged xi(∞) = ±∞. For ε = 0.08, 5 of 50 runs diverged;
those are omitted from the data plotted in Figure 6.

The curve shows a best-fit t ∼ 1
ε

curve. It fits within the
error bars, but there appears to be some systematic error,
as the curve consistently undershoots all points for ε ≥ 0.03.
As the system approaches the unstable region, there seems
to be some small second-order effect in ε, perhaps coming
from oscillation of devices with high degree. We have not

attempted to precisely characterize this effect.
As a final confirmation of the behavior of the process, we

ran a series of experiments on the effect of the difference
between values in the initial conditions. Fixing all other
variables, we varied xi(0) for all nodes in the right half of the
space between 10 and 100. Because Algorithm (1) converges
exponentially quickly, we expect a logarithmic increase in
convergence time with an increase in the step size.

The result of the experiments is shown in Figure 7. A
best-fit logarithmic curve is plotted, matching the data well.

6. CONTRIBUTIONS
Although Laplacian-based averaging consensus is an at-

tractive approach to implementing distributed consensus on
spatial computers, analysis shows that it has an expected
convergence time of O(diameter2) to reach a fixed amount of
error, with respect to the structure of the spatial computer.
Experimental verification further determines that the con-
stant factors on this convergence rate are relatively large,
rendering these algorithms generally impractical for large
spatial computers.

There are two basic paths by which the impact of this
disappointing result might be alleviated. On the one hand,
even a very small fraction of non-spatial links added to a
spatial computer may greatly shrink the effective diame-
ter. Preliminary investigations indicate that adding 1% or
less non-spatial links may make these algorithms competi-
tive with the theoretical best performance of a purely spa-
tial algorithm on computers more than a few hundred hops
in diameter—a result not unexpected given the small-world
findings of [16]. For those application domains where it is

912

●

●

●

●

●
●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0

4
1e

+0
5

Step size (εε)

C
on

ve
rg

en
ce

 ti
m

e
(s

)

Figure 6: Convergence time is inverse linear with
step size ε, though this relationship breaks down as
the system approaches instability. The line shown
is an inverse linear fit, and the system is generally
unstable for ε > 0.08.

not reasonable to add non-spatial links to the computer, on
the other hand, it is an open question how to design a prac-
tical algorithm that might approach the fixed lower bound
of O(diameter) convergence.

7. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. H. y,

T. Knight, R. Nagpal, E. Rauch, G. Sussman, and
R. Weiss. Amorphous computing. Technical Report
AIM-1665, MIT, 1999.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. Journal of the
ACM, 42:124–142, January 1995.

[3] J. Beal. Programming an amorphous computational
medium. In J.-P. B. et al., editor, Unconventional
Programming Paradigms 2004 (LNCS 3566), pages
121–136. Springer-Verlag, 2005.

[4] J. Beal and J. Bachrach. Infrastructure for engineered
emergence on sensor/actuator networks. IEEE
Intelligent Systems, 2006.

[5] D. Coore. Botanical Computing: A Developmental
Approach to Generating Interconnect Topologies on an
Amorphous Computer. PhD thesis, MIT, 1999.

[6] A. DeHon. Very large scale spatial computing. In
Third International Conference on Unconventional
Models of Computation, pages 27–37, 2002.

[7] M. Egerstedt and X. Hu. Formation constrained
multi-agent control. IEEE Trans. on Robotics and
Automation, 17(6):947–951, 2001.

[8] J.-L. Giavitto, C. Godin, O. Michel, and
P. Prusinkiewicz. Computational models for

●

●

●

●

●

● ●

●
● ●

20 40 60 80 100

0
20

00
0

40
00

0
60

00
0

80
00

0

Height of step in initial conditions

C
on

ve
rg

en
ce

 ti
m

e
(s

)
Figure 7: Convergence time scales logarithmically
with the initial disagreement between nodes in the
left and right halves of the distribution.

integrative and developmental biology. Technical
Report 72-2002, Univerite d’Evry, LaMI, 2002.

[9] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher.
Computation in space and space in computation.
Technical Report 103-2004, Univerite d’Evry, LaMI,
2004.

[10] L. Kleinrock and J. Silvester. Optimum transmission
radii for packet radio networks or why six is a magic
number. In NTC ’78; National Telecommunications
Conference, Birmingham, Ala., December 3-6, 1978,
Conference Record. Volume 1. (A79-40501 17-32)
Piscataway, N.J., Institute of Electrical and
Electronics Engineers, Inc., 1978, p. 4.3.1-4.3.5.,
volume 1, pages 4–+, 1978.

[11] M. Lu, L. zhu Zhang, and F. Tian. Lower bounds of
the laplacian spectrum of graphs based on diameter.
Linear algebra and its applications, 420:400–406, 2007.

[12] N. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[13] B. Mohar. The laplacian spectrum of graphs. In
Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J.
Schwenk, editors, Graph Theory, Combinatorics, and
Applications, volume 2, pages 871–898. Wiley, 1991.

[14] R. Nagpal. Programmable Self-Assembly: Constructing
Global Shape using Biologically-inspired Local
Interactions and Origami Mathematics. PhD thesis,
MIT, 2001.

[15] M. W. Newman. The laplacian spectrum of graphs.
Master’s thesis, University of Manitoba, 2000.

[16] R. Olfati-Saber. Ultrafast consensus in small-world
networks. American Control Conference, 2005.
Proceedings of the 2005, pages 2371–2378 vol. 4, June

913

2005.

[17] R. Olfati-Saber. Flocking for multi-agent dynamic
systems: Algorithms and theory. IEEE Trans. on
Automatic Control, 51(3), March 2006.

[18] R. Olfati-Saber, J. Fax, and R. Murray. Consensus
and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95(1):215–233, Jan. 2007.

[19] R. Olfati-Saber and R. Murray. Consensus problems in
networks of agents with switching topology and
time-delays. Automatic Control, IEEE Transactions
on, 49(9):1520–1533, Sept. 2004.

[20] D. P. Spanos, R. Olfati-Saber, and R. M. Murray.
Approximate distributed kalman filtering in sensor
networks with quantifiable performance. In Fourth
International Symposium on Information Processing
in Sensor Networks, pages 133–139, 2005.

[21] L. Xiao, S. Boyd, and S. Lall. A scheme for
asynchronuous distributed sensor fusion based on
average consensus. In Fourth International Symposium
on Information Processing in Sensor Networks, 2005.

[22] C.-H. Yu and R. Nagpal. Self-adapting modular
robotics: A generalized distributed consensus
framework. In International Conference on Robotics
and Automation (ICRA), 2009.

[23] F. Zambonelli and M. Mamei. Spatial computing: An
emerging paradigm for autonomic computing and
communication. Technical report, Universita di
Modena e Reggio Emilia, 2004.

914

